Kernel-Based Nonlinear Blind Source Separation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Blind Source Separation Using Kernel Feature Spaces

In this work we propose a kernel-based blind source separation (BSS) algorithm that can perform nonlinear BSS for general invertible nonlinearities. For our kTDSEP algorithm we have to go through four steps: (i) adapting to the intrinsic dimension of the data mapped to feature space F , (ii) finding an orthonormal basis of this submanifold, (iii) mapping the data into the subspace of F spanned ...

متن کامل

Kernel Feature Spaces and Nonlinear Blind Source Separation

In kernel based learning the data is mapped to a kernel feature space of a dimension that corresponds to the number of training data points. In practice, however, the data forms a smaller submanifold in feature space, a fact that has been used e.g. by reduced set techniques for SVMs. We propose a new mathematical construction that permits to adapt to the intrinsic dimension and to find an ortho...

متن کامل

Blind Source Separation of Nonlinear Mixing Models

We present a new set of learning rules for the non-linear blind source separation problem based on the information maximization criterion. The mixing model is divided into a linear mixing part and a nonlinear transfer channel. The proposed model focuses on a paramet-ric sigmoidal nonlinearity and higher order polynomials. Our simulation results verify the convergence of the proposed algorithms.

متن کامل

Nonlinear Blind Source Separation Using Ensemble Learning

Blind source separation (BSS) and the closely related Independent Component Analysis (ICA) have recently drawn a lot of attention in unsupervised neural learning and statistical signal processing 1, 2, 3]. In the basic linear case, ICA and BSS use the same data model x(t) = As(t) = m X i=1 s i (t)a i : (1) Here x(t) is the n-dimensional t:th data vector, s 1 (t); : : : ; s m (t) are the respect...

متن کامل

Blind Source Separation in Post Nonlinear Mixtures

This work implements alternative algorithms to that of Taleb and Jutten for blind source separation in post nonlinear mixtures. We use the same mutual information criterion as them, but we exploit its invariance with respect to translation to express its relative gradient in terms of the derivatives of the nonlinear transformations. Then we develop algorithms based on these derivatives. In a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computation

سال: 2003

ISSN: 0899-7667,1530-888X

DOI: 10.1162/089976603765202677